曹阳,陈龙飞,胡雪欢,等.航空活塞发动机可持续燃料燃烧排放碳烟颗粒微观特性[J].内燃机工程,2025,46(3):8-14.
航空活塞发动机可持续燃料燃烧排放碳烟颗粒微观特性
Microscopic Characteristics of Soot Derived from an Aviation Piston Engine Fueled with Sustainable Aviation Fuel
DOI:10.13949/j.cnki.nrjgc.2025.03.002
关键词:可持续航空燃料  碳烟颗粒  化学组分  微晶反应性
Key Words:sustainable aviation fuel(SAF)  soot particle  chemical composition  crystallite reactivity
基金项目:国家重点研发计划项目(2022YFB2602000);国家自然科学基金项目(52306127)
作者单位E-mail
曹阳* 北京航空航天大学 能源与动力工程学院北京 100191 caoyang9508@buaa.edu.cn 
陈龙飞 北京航空航天大学 能源与动力工程学院北京 100191
杭州市北京航空航天大学国际创新研究院(北京航空航天大学国际创新学院)杭州 311115 
chenlongfei@buaa.edu.cn 
胡雪欢* 北京航空航天大学 能源与动力工程学院北京 100191 huxuehuan@buaa.edu.cn 
陈晓阳 北京航空航天大学 能源与动力工程学院北京 100191 chenxiaoyang@buaa.edu.cn 
摘要点击次数: 21
全文下载次数: 2
摘要:探究了燃用100%加氢酯和脂肪酸途径生产的可持续航空燃料(hydro-processed esters and fatty acids-sustainable aviation fuel, HEFA-SAF)和常规航空煤油RP-3的航空活塞发动机排放的碳烟颗粒的微观特性。发动机设计负荷包括慢车、巡航和起飞。结果表明:HEFA-SAF碳烟聚集体在起飞工况下具有较大的碳氧质量比(记为C/O比),而RP-3碳烟聚集体在慢车工况下具有较大的C/O比。两种航空燃料衍生的碳烟颗粒的初级颗粒平均粒径均随发动机负荷的升高而增大,但在所有工况下HEFA-SAF碳烟颗粒的平均粒径均小于RP-3碳烟颗粒。从低负荷升至高负荷时,两种航空燃料衍生的碳烟颗粒内部纳米结构反应性均有所降低。在慢车工况下RP-3碳烟颗粒反应性较小,而在起飞工况下HEFA-SAF碳烟颗粒反应性更小。研究结果揭示了C/O比、内部纳米结构、碳烟颗粒石墨化程度和发动机负荷之间密切相关,而燃料成分对这些参数具有非单调性影响,这可归因于燃料–空气混合和燃料热解动力学之间的动力学时间尺度竞争。
Abstract:The microscopic characteristics of soot particles emitted by a piston aircraft engine using 100% hydro-processed esters and fatty acids-sustainable aviation fuel (HEFA-SAF) and conventional jet fuel RP-3 at three operation modes (idle, cruise and takeoff) were analyzed. The results show that the carbon-to-oxygen (C/O) ratios of soot aggregates were observed to be larger under take-off conditions for HEFA-SAF and under idle conditions for RP-3. For both fuels, the reactivity of nanostructures was observed to decrease with increasing engine load. Soot particles derived from HEFA-SAF were observed to possess smaller mean primary particle diameters than those from RP-3 at all load conditions. However, under idle conditions, RP-3 soot particles exhibited relatively lower reactivity, whereas HEFA-SAF soot particles demonstrated even lower reactivity under takeoff conditions. Through experimental data analysis, it is established that the C/O ratio, internal nanostructures, and the degree of graphitization of soot particles exhibited significant coupling relationships with engine loads. Notably, the chemical composition of aviation fuels is demonstrated to show distinct non-linear trends in influencing these critical microstructural parameters. The phenomenon fundamentally originates from the complex synergistic effects between fuel atomization/mixing processes and high-temperature pyrolysis reaction kinetics occurring across different temporal scales.
查看全文  HTML   查看/发表评论