张欣怡,侯跃明,曾刚伟,等.高温高压液氨喷雾宏微观特性试验与仿真[J].内燃机工程,2025,46(3):15-26.
高温高压液氨喷雾宏微观特性试验与仿真
Experiment and Simulation of Macro-Micro Properties of Liquid Ammonia Spray under High Temperatures and High Pressures
DOI:10.13949/j.cnki.nrjgc.2025.03.003
关键词:  喷雾  数值模拟  雾化特性  可视化试验
Key Words:ammonia  spray  numerical simulation  atomization characteristic  visualization experiment
基金项目:国家自然科学基金项目(52236001)
作者单位E-mail
张欣怡* 西安交通大学 能源与动力工程学院西安 710049 Xinyizhang_1023@stu.xjtu.edu.cn 
侯跃明 西安交通大学 能源与动力工程学院西安 710049 2078439728@qq.com 
曾刚伟 西安交通大学 能源与动力工程学院西安 710049 1561746176zgw@stu.xjtu.edu.cn 
汤成龙* 西安交通大学 能源与动力工程学院西安 710049 chenglongtang@mail.xjtu.edu.cn 
摘要点击次数: 20
全文下载次数: 3
摘要:通过试验与数值模拟相结合的方法,系统探究了液氨在高温(690~1 100 K)和高压(1.0~4.0 MPa)条件下的喷雾特性,旨在构建精准的液氨喷雾预测模型。试验采用高速阴影摄影技术,捕捉喷雾的动态过程;数值模拟则基于拉格朗日–欧拉耦合方法,重点分析了喷雾的速度场、索特平均直径(Sauter mean diameter, SMD)和概率密度分布函数(probability density function, PDF)等关键参数。研究结果表明,随着环境压力升高,喷雾的轴向扩展减弱,径向扩展增强,喷雾贯穿距缩短,尖端速度降低,锥角增大(最大增幅达86.13%);环境温度升高可显著促进喷雾的蒸发和扩散效果,但对喷雾贯穿距和锥角的影响不显著。试验发现,在环境温度690 K、环境压力1.0 MPa的情况下,由于氨处于闪沸状态,喷雾显著膨胀,锥角变大。此外,喷雾的速度场和液滴分布对压力变化高度敏感,随着压力增加,SMD显著减小(最大降幅达42.83%),PDF向小液滴偏移,提升了雾化效果。研究验证了所建立模型在液氨喷雾预测中的可靠性。
Abstract:The spray characteristics of liquid ammonia under high-temperature (690~1 100 K) and high-pressure (1.0~4.0 MPa) conditions were systematically investigated by combining experiment and numerical simulation, aiming to develop an accurate prediction model for liquid ammonia spray. The experimental analysis employed high-speed shadow-graphy to capture the dynamic spray process, while the numerical simulation based on the Lagrangian-Eulerian coupling approach, focused on key parameters such as velocity fields, Sauter mean diameter(SMD), and probability density function(PDF). The results reveal that increasing ambient pressure weakens the axial spread of the spray while enhancing radial expansion, reducing spray penetration, lowering tip velocity, and increasing the cone angle (with a maximum increase of 86.13%). Higher ambient temperatures significantly promote evaporation and diffusion effects but have limited impact on spray penetration and cone angle. The experiment shows that at 690 K and 1.0 MPa, ammonia undergoes flash boiling, causing significant spray expansion and an increased cone angle. Furthermore, the spray velocity field and droplet distribution exhibit high sensitivity to pressure variations, with SMD decreasing significantly (maximum reduction of 42.83%) and PDF shifting toward smaller droplets, thereby improving atomization performance. The reliability of the developed model for predicting liquid ammonia spray behavior was validated.
查看全文  HTML   查看/发表评论