石磊,雷艳,梁晓杰,等.基于深度学习的甲烷高压射流湍流燃烧火焰图像处理方法研究[J].内燃机工程,2022,43(4):22-30.
基于深度学习的甲烷高压射流湍流燃烧火焰图像处理方法研究
Investigation on High-Pressure Methane Jet Turbulent Combustion Flame Image Processing Method Based on Deep Learning
DOI:10.13949/j.cnki.nrjgc.2022.04.003
关键词:深度学习  图像分割  甲烷  高压射流  湍流火焰
Key Words:deep learning  image segmentation  methane  high-pressure jet  turbulent flame
基金项目:内燃机可靠性国家重点实验室开放基金项目(skler—201913);湖南省自然科学基金项目(2021JJ60056)
作者单位E-mail
石磊* 潍柴动力股份有限公司 内燃机可靠性国家重点实验室潍坊 261061 shilei02@weichai.com 
雷艳* 北京工业大学 汽车工程系北京 100124 leiyan@bjut.edu.cn 
梁晓杰 北京工业大学 汽车工程系北京 100124  
林琛 北京工业大学 汽车工程系北京 100124  
王磊 潍柴动力股份有限公司 内燃机可靠性国家重点实验室潍坊 261061  
王晓艳 潍柴动力股份有限公司 内燃机可靠性国家重点实验室潍坊 261061  
周定武 湖南汽车工程职业学院长沙 412001  
摘要点击次数: 1276
全文下载次数: 843
摘要:基于定容弹开展了高压天然气(甲烷)射流燃烧光学测试,并分别运用深度学习方法和边缘检测算法进行了图像处理。对比结果表明,由于图像中存在射流、火焰差异大的图像识别目标,边缘检测算法无法较好识别射流和火焰,该算法适合于单一目标的火焰图像处理。深度学习方法可识别射流湍流燃烧火焰轮廓,有效地获得射流湍流燃烧火焰前锋面发展位移及火焰传播速度,该方法适用于多个目标的火焰图像处理。根据深度学习图像处理结果表明:当高压甲烷射流接触预燃球形火焰时,火焰由稳定层流速度(<3 m/s)快速上升,最大火焰传播速度高达300 m/s,形成湍流火焰,火焰沿射流方向快速向前发展,火焰面积增加。随着射流和点火时间间隔的增加,最大火焰传播速度线性下降。
Abstract:Based on a constant volume combustion chamber(CVC), an optical experiments of high-pressure nature gas (methane) jet combustion was carried out, and the flame image processing was completed by the deep learning method and the edge detection algorithm, respectively. The comparative results showed that because there were both gas jet and flame in these images which had many targets with great difference, the edge detection algorithm could not clearly identify the gas jet and the flame, so it is suitable for single target image processing. The deep learning method could gain the flame contour, and further effectively obtain the macroscopic property of the jet turbulent flame such as the jet turbulent flame propagation distance and flame propagation velocity, so it is suitable for multi-target image processing. The results based on deep learning image processing method show that when the high-pressure methane jet meets the premixed fireball, the flame speed rapidly increases from the initial laminar speed (<3 m/s) up to greater speed with the maximum flame speed of more than 300 m/s, which forms the turbulent flame. The turbulent flame penetrates forward along the jet direction and the area of the jet flame increases. The maximum flame speed linearly decreases as the interval between the jet and the spark ignition.
查看全文  HTML   查看/发表评论