刘明超,尧命发,王浒,等.基于燃烧室与增压器匹配的柴油机热效率优化设计及仿真研究[J].内燃机工程,2021,42(5):14-22.
基于燃烧室与增压器匹配的柴油机热效率优化设计及仿真研究
Optimization Design and Numerical Simulation of Combustion Chamber and Turbocharger Matching for Improving Thermal Efficiency of Diesel Engine
DOI:10.13949/j.cnki.nrjgc.2021.05.003
关键词:柴油机  热效率  燃烧系统开发  增压器匹配  不同工况匹配
Key Words:diesel engine  thermal efficiency  develop combustion system  matching of turbocharger  matching different conditions
基金项目:国家重点研发计划项目(2018YFB0105900)
作者单位E-mail
刘明超 天津大学 内燃机燃烧学国家重点实验室 15222615635@163.com 
尧命发* 天津大学 内燃机燃烧学国家重点实验室 y_mingfa@tju.edu.cn 
王浒 天津大学 内燃机燃烧学国家重点实验室  
郑尊清 天津大学 内燃机燃烧学国家重点实验室  
梁和平 玉柴联合动力股份有限公司  
束铭宇 玉柴联合动力股份有限公司  
摘要点击次数: 1938
全文下载次数: 823
摘要:以某重型柴油机为研究对象,采用仿真计算的方法探究了基于缸内燃烧系统和空气系统优化使发动机最低油耗区间匹配不同使用工况,提出满足发动机不同应用场景需求的匹配方案。研究结果表明:采用压缩比为19.5的燃烧室,缸内混合气过稀区减少,燃烧放热速率加快,热效率提高;通过合理匹配增压器和燃烧室可以实现柴油机最低油耗区间与目标工况区间的匹配。以优化低转速中低负荷工况油耗为目标,采用压缩比为19.5的燃烧室,同时采用较小的涡轮当量流通截面积,可以使最低油耗区匹配低转速中小负荷工况,低转速中负荷油耗改善3.1%。以优化中转速中高负荷油耗为目标,采用压缩比为18.5的燃烧室,结合增压器的优化匹配,可以使最低油耗区匹配中转速中高负荷工况,中转速中负荷油耗改善1.6%。以优化高转速大负荷油耗为目标,通过提高最大爆发压力,采用压缩比为21.5的燃烧室,同时采用较大的涡轮当量流通截面积,高转速大负荷油耗可改善4.2%。
Abstract:Based on a heavy-duty diesel engine, a numerical simulation study of the scheme that move the minimum fuel consumption range to different conditions by matching different combustion systems was carried out. Results show that when the compression ratio was 19.5, the distribution of the lean mixture in the cylinder was reduced, and the heat release rate was faster, resulting in a higher thermal efficiency. The minimum brake specific fuel consumption (BSFC) range can be moved to various target conditions by matching turbocharger and combustion chamber appropriately. When the compression ratio was increased to 19.5, combined with turbocharger configurations optimized at low speed, the minimum BSFC range can be moved to low speed condition, with BSFC upmost reduction of 3.1%. When the compression ratio was increased to 18.5, together with turbocharger optimization, the minimum BSFC range can be moved to medium speed condition, with BSFC reduction of 1.6%. Similar approach has been applied at high speed and high load with elevated peak in-cylinder pressure limit, within which a relatively larger turbine was adopted, and the BSFC at high speed and high load can be reduced by 4.2%.
查看全文  HTML   查看/发表评论